Interaction of Metals with Suspended Graphene Observed by Transmission Electron Microscopy.

نویسندگان

  • Recep Zan
  • Ursel Bangert
  • Quentin Ramasse
  • Konstantin S Novoselov
چکیده

In this Perspective, we present an overview of how different metals interface with suspended graphene, providing a closer look into the metal-graphene interaction by employing high-resolution transmission electron microscopy, especially using high-angle dark field imaging. All studied metals favor sites on the omnipresent hydrocarbon surface contamination rather than on the clean graphene surface and present nonuniform distributions, which never result in continuous films but instead in clusters or nanocrystals, indicating a weak interaction between the metal and graphene. This behavior can be altered to some degree by surface pretreatment (hydrogenation) and high-temperature vacuum annealing. Graphene etching is observed in a scanning transmission electron microscope (STEM) under high vacuum and 60 kV electron beam acceleration voltage conditions for all metals, except for Au. This unusual metal-mediated etching sheds new light on the metal-graphene interaction; it might explain the observed higher frequency of cluster nucleation for certain transition metals and might have implications regarding controlled nanomanipulation, that is, for self-assembly and sculpturing of future graphene-based devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metal-graphene interaction studied via atomic resolution scanning transmission electron microscopy.

Distributions and atomic sites of transition metals and gold on suspended graphene were investigated via high-resolution scanning transmission electron microscopy, especially using atomic resolution high angle dark field imaging. All metals, albeit as singular atoms or atom aggregates, reside in the omni-present hydrocarbon surface contamination; they do not form continuous films, but clusters ...

متن کامل

Visualizing copper assisted graphene growth in nanoscale

Control synthesis of high quality large-area graphene on transition metals (TMs) by chemical vapor deposition (CVD) is the most fascinating approach for practical device applications. Interaction of carbon atoms and TMs is quite critical to obtain graphene with precise layer number, crystal size and structure. Here, we reveal a solid phase reaction process to achieve Cu assisted graphene growth...

متن کامل

Low-energy electron point projection microscopy of suspended graphene, the ultimate ‘microscope slide’

Point projection microscopy (PPM) is used to image suspended graphene by using low-energy electrons (100–205 eV). Because of the low energies used, the graphene is neither damaged nor contaminated by the electron beam for doses of the order of 107 electrons per nm2. The transparency of graphene is measured to be 74%, equivalent to electron transmission through a sheet twice as thick as the cova...

متن کامل

Microscopic characterisation of suspended graphene grown by chemical vapour deposition.

We present a multi-technique characterisation of graphene grown by chemical vapour deposition (CVD) and thereafter transferred to and suspended on a grid for transmission electron microscopy (TEM). The properties of the electronic band structure are investigated by angle-resolved photoelectron spectromicroscopy, while the structural and crystalline properties are studied by TEM and Raman spectr...

متن کامل

Unraveling the 3D Atomic Structure of a Suspended Graphene/hBN van der Waals Heterostructure

In this work we demonstrate that a free-standing van der Waals heterostructure, usually regarded as a flat object, can exhibit an intrinsic buckled atomic structure resulting from the interaction between two layers with a small lattice mismatch. We studied a freely suspended membrane of well-aligned graphene on a hexagonal boron nitride (hBN) monolayer by transmission electron microscopy (TEM) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 3 7  شماره 

صفحات  -

تاریخ انتشار 2012